版权声明:转载请注明出处。 https://blog.csdn.net/u014427196/article/details/44003711

题目链接: http://poj.org/problem?id=2533

Longest Ordered Subsequence

Time Limit: 2000MS Memory Limit: 65536K
Total Submissions: 35929 Accepted: 15778

Description

A numeric sequence of _a i _ is ordered if _a 1 _ < _a 2 _ < … < _a N _
. Let the subsequence of the given numeric sequence ( _a 1 _ , _a 2 _ , …,
_a N _ ) be any sequence ( _a i 1 _ , _a i 2 _ , …, _a i K _ ), where
1 <= _i 1 _ < _i 2 _ < … < _i K _ <= _N_ . For example, sequence (1, 7,
3, 5, 9, 4, 8) has ordered subsequences, e. g., (1, 7), (3, 4, 8) and many
others. All longest ordered subsequences are of length 4, e. g., (1, 3, 5, 8).

Your program, when given the numeric sequence, must find the length of its
longest ordered subsequence.

Input

The first line of input file contains the length of sequence N. The second
line contains the elements of sequence - N integers in the range from 0 to
10000 each, separated by spaces. 1 <= N <= 1000

Output

Output file must contain a single integer - the length of the longest ordered
subsequence of the given sequence.

Sample Input

7
1 7 3 5 9 4 8

Sample Output

4

求最长上升子序列

#include<stdio.h>
#include<iostream>
#include<math.h>
#include<stdlib.h>
#include<ctype.h>
#include<algorithm>
#include<vector>
#include<string>
#include<queue>
#include<stack>
#include<set>
#include<map>

using namespace std;

int n,p[1010],dp[1010];

int main()
{
    while (scanf("%d", &n) != EOF)
    {
        for (int i = 1; i <= n; i++)
            scanf("%d",&p[i]);

        for (int i = 1; i <= n; i++)
        {
            dp[i] = 1;
            for (int j = 1; j < i; j++)
            {
                if (p[i] > p[j])
                    dp[i] = max(dp[i],dp[j] + 1);
            }
        }
        int ans = -1;
        for (int i = 1; i <= n; i++)
            ans = max(ans,dp[i]);
        printf("%d\n",ans);
    }
    return 0;
}